Abstract
The hydrodynamic performance of microchannel cooling systems has been predicted analytically. The microchannel have a high surface area to volume ratio, due to that it has high heat transfer coefficients. The microchannel cooling systems have received prompt attention from researchers to address the cooling challenges of electronic components. However, due to the diameter of the order of microns, as the pressure drop is inversely proportional to the channel diameter, it leads to more pressure drop in the microchannel. Such that the investigation of flow characteristics in the microchannel is tremendously on-demand to understand hydrodynamics. Unfortunately, the applicability of conventional theories (Darcy pressure drop equations) in microchannel flows is still under debate. Kandlikar has come up with an expression for predicting pressure drop in microchannels by considering the Poiseuille number and aspect ratio of microchannels. This paper concentrated on validating the predictions of the Kandlikar pressure drop equation and Darcy pressure drop equation with experimental work taken from literature. The results show that available analytical methods are under-predicting as those will not consider the surface roughness and uncertainty present while conducting experiments. Among the analytical models, the Kandlikar equation predictions are better than the other methods, and the results of the prediction are well in agreement with experimental results.