Abstract
With synergy of structural stability and availability of plenty of active sites with open structure for better reactant/product accessibility, dendritic nanostructures stand alone. However, the complexities/difficulties in their design have largely hindered their wide-scale adoption in catalysis. Herein, with this work we report a green and new protocol for the synthesis of unsupported as well as reduced graphene oxide (rGO)-reinforced dendritic Ru nanostructures (Ru@rGO) via controlled galvanic replacement reaction with Mg as the sacrificial metal. Interestingly, experimental findings elucidate Ru@rGO as a promising electrocatalyst for hydrogen evolution reaction (HER) in a wide range of pH with nearly zero onset potential and superior current density as compared with the state-of-art Pt/C catalyst in alkaline as well as acidic media. It requires only 32 and 68 mV overpotential (η) to achieve a current density of 10 mA cm−2 …