Abstract
Hydrogen, a carbon-free fuel, has the potential to aid global nations in achieving eight of the 17 Sustainable Development Goals (SDG). The shortcomings associated with H2 transportation and storage can be mitigated by using NH3 as hydrogen carrier because of its better safety, physical, and environmental properties. However, to achieve the global climate target, green ammonia production must be incremented by four times (688 MT) from the current level. Hence, understanding of advanced green NH3 production and storage technologies, along with the factors that influence them becomes necessary. It also aids in identifying the factors hindering green H2 and NH3 production, which can be resolved by promoting research. At the same time, drafting policies that encourage green H2 and NH3 production can abet in overcoming the bottleneck faced by the industry. Presently, green ammonia production can be made feasible only when the renewable electricity cost is less than $20/MWh and carbon price of $150/t of CO2 emissions is levied. Approximately 80 % of the energy consumed during NH3 is spent on H2 generation; therefore, it is necessary to enact policies that promote green H2 production globally. Producing green H2 can aid in mitigating ∼90 % of the greenhouse gases emitted during NH3 manufacturing thereby facilitating to reduce the carbon footprint of H2 carrier and decarbonize NH3 industry. © 2025 Elsevier B.V.